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Abstract. The statement that localization with respect to any (possibly
proper) class of morphisms exists in any locally presentable category cannot
be proved using the ordinary ZFC axioms of set theory. In fact, it is known
to be equivalent to a large-cardinal principle. In this article we show that,
if Vopěnka’s principle is assumed true, then in any cofibrantly generated, left
proper, simplicial model category M whose underlying category is locally pre-
sentable, homotopy localization exists with respect to any class of maps. We
also show that, in any such category, every homotopy idempotent functor is a

homotopy localization with respect to some class S of maps. Furthermore, if
Vopěnka’s principle holds, then S can be chosen to be a set. There are exam-
ples showing that the latter need not be true if M is not cofibrantly generated.
The above assumptions on M are satisfied by simplicial sets and symmetric
spectra over simplicial sets, among many other model categories.

Introduction

Locally presentable categories were introduced by Gabriel and Ulmer in [18].
This concept has proved to be very useful in category theory. Among other things,
the orthogonal subcategory problem (asking if localization with respect to every
class of morphisms exists) has a positive solution in locally presentable categories if
the given class of morphisms is a set; see, e.g., [1, 1.37]. Moreover, if one assumes the
validity of a suitable set-theoretical principle, then there is also a positive solution
for any proper class of maps. In fact, Adámek, Rosický and Trnková proved in [2]
that a positive answer to the orthogonal subcategory problem in locally presentable
categories is equivalent to the weak Vopěnka principle, a large-cardinal principle
that cannot be proved using the usual ZFC axioms (Zermelo–Fraenkel axioms with
the axiom of choice).

Localizing with respect to sets of maps is a common technique in homotopy
theory, as well as in other areas of Mathematics. However, localizing with respect
to proper classes of maps is a more delicate issue, since the standard methods may
fall into set-theoretical difficulties (see for instance [9], where positive results in
equivariant homotopy theory involving localization with respect to proper classes
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of maps were obtained). Due to difficulties of this sort, it is still unknown whether
the existence of arbitrary cohomological localizations of spaces can be proved or
not using the ZFC axioms. An interesting step was made in [8], based on results
in [1], by showing that Vopěnka’s principle implies the existence of localization with
respect to any proper class of maps in the category of simplicial sets. The existence
of cohomological localizations is of course a special case. Vopěnka’s principle is
equivalent to the statement that the category of ordinals cannot be fully embedded
into the category of graphs (where a graph is meant to be a binary relation). This
statement has a place in the hierarchy of large-cardinal principles; see [1].

In this article we contribute further to the ongoing program of extending basic
results from locally presentable categories to homotopy theory, which may perhaps
give answers to other open problems, under large-cardinal assumptions. In order to
achieve this, one has to work in suitable model categories. Specifically, our results
are stated in left proper, combinatorial, simplicial model categories. The term
“combinatorial” means that the model category is cofibrantly generated and the
underlying category is locally presentable (see [1] and [20] for the definitions of these
concepts). This notion is due to J. H. Smith, who constructed (in unpublished work)
localizations of combinatorial model category structures with respect to sets of
maps. In [15], Dugger proved that every combinatorial model category is equivalent
to a localization of a category of diagrams of simplicial sets, hence generalizing [1,
1.46]. Among many other examples, the model category of simplicial sets and the
model category of symmetric spectra based on simplicial sets are combinatorial.

In Section 1 we show that Vopěnka’s principle implies the existence of local-
ization with respect to any class of maps in left proper, combinatorial, simplicial
model categories. This fact can also be deduced, with a different argument, from
results obtained by Rosický and Tholen in [24, §2]. Furthermore, under Vopěnka’s
principle, any such localization is equivalent to localization with respect to some
set of maps.

Next, we address a closely related question, raised by Dror Farjoun in [11],
asking if any functor L on simplicial sets that is idempotent up to homotopy is
equivalent to localization with respect to some map f . He himself showed in [12]
that, if L is assumed to be, in addition, continuous, then it is indeed equivalent to
localization with respect to a proper class of maps. This result was improved in
[8] by showing that the assumption that L be continuous is unnecessary, and that,
under Vopěnka’s principle, the proper class of maps defining L can be replaced by a
set. Furthermore, it was shown that such a replacement of a class by a set cannot be
done in general using only the ZFC axioms, since a counterexample was exhibited
by means of another assumption (the nonexistence of measurable cardinals), which
is relatively consistent with ZFC.

In Section 2 we show (without resorting to large-cardinal principles) that every
homotopy idempotent functor L in a simplicial model category M is equivalent
to localization with respect to a proper class of maps, assuming either that L is
continuous or that M satisfies suitable hypotheses allowing to approximate any
homotopy functor by a continuous functor. For this, one may assume that M is
a simplicial model category that is proper, cofibrantly generated and stable (as in
[23]), or left proper and either combinatorial or cellular (as in [14]). Furthermore, if
one assumes that Vopěnka’s principle is true and M is combinatorial, then, again,
the proper class of maps defining L can be replaced by a set. In most cases of
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interest, such a set of maps can further be replaced by a single map (by taking
the coproduct of all maps in the set), but not always, as we show by means of an
example at the end of the paper.

In [10] an example was given of a homotopy idempotent functor in a locally
presentable (but not cofibrantly generated) model category that fails to be a local-
ization with respect to any set of maps. Namely, in the category of maps between
simplicial sets with the model structure generated by the collection of orbits (as
defined in [13]), the functor that sends every map to the final object (i.e., a map
between two points) is not a localization with respect to any set of maps. Hence
our results in Section 2 below are sharp.

Acknowledgements: Discussions with Mark Hovey, Jǐŕı Rosický, Brooke Shipley
and Jeff Smith are greatly appreciated.

1. Simplicial orthogonality

Model categories were introduced by Quillen in [22] and have recently been
discussed in the books [16], [19], [20], [21], among many other places, with slight
changes in the terminology and even in the assumptions. In this article we will as-
sume that model categories are complete, cocomplete, and equipped with functorial
factorizations. See [16, § 9], [20, § 7], or [21, § 1] for more details.

Although our main results are stated for simplicial model categories (for the
definition, see for example [19, II.3] or [20, 9.1.5]), several of our steps require only
the use of homotopy function complexes, as introduced in [17] and discussed in [20,
Ch. 17] or [21, § 5]. Thus, for any given model category M, we make a functorial
choice of a fibrant simplicial set map(X, Y ) for each X and Y in M, whose homotopy
type is the same as the diagonal of the bisimplicial set M(X∗, Y∗) where X∗ → X

is a cosimplicial resolution of X and Y → Y∗ is a simplicial resolution of Y . The
homotopy type of map(X, Y ) remains unchanged if X or Y are replaced by weakly
equivalent objects. If M is a simplicial model category and Map(X, Y ) denotes
the simplicial set given as part of the structure in M, then Map(QX, RY ) is a
good choice of a homotopy function complex, where Q is a cofibrant approximation
functor and R is a fibrant approximation functor in M.

Before discussing simplicial orthogonality in model categories by means of ho-
motopy function complexes, we recall the following older concepts from category
theory. If C is any category, an object X and a morphism f : A → B are called
orthogonal (see [1] or [7] for details and motivation) if the induced function

f∗ : C(B, X) −→ C(A, X)

is bijective. (We denote by C(X, Y ) the set of morphisms from X to Y in C.)
If L is an endofunctor of C equipped with a natural transformation η : Id → L

such that Lη : L → LL is an isomorphism and ηL = Lη, then L is called an
idempotent functor or a localization. Then every object isomorphic to LX for some
X is orthogonal to every morphism f such that Lf is an isomorphism, and these
two classes determine each other by the orthogonality relation; that is, an object
is isomorphic to LX for some X if and only if it is orthogonal to all morphisms f

such that Lf is an isomorphism, and reciprocally.
As a special case, this terminology applies to the homotopy category HoM

associated with any model category M. Thus, orthogonality in HoM between an
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object X and a map f : A → B amounts to the condition that

(1) f∗ : [B, X ] −→ [A, X ]

be bijective, where [X, Y ] means, as usual, HoM(X, Y ). Examples of idempotent
functors in the homotopy category of simplicial sets, such as homological localiza-
tions, have been studied since several decades ago; see [4].

Throughout the extensive study of localizations undertaken since then in ho-
motopy theory, a stronger notion of “simplicially enriched orthogonality” came to
be considered. There is no widely agreed terminology for it yet. It was called
simplicial orthogonality in [8] and homotopy orthogonality in [20, §17]. Thus, if M

is any model category with a choice of homotopy function complexes, an object X

and a map f : A → B will be called simplicially orthogonal or homotopy orthogonal
(not to be confused with orthogonality in HoM) if the induced map of simplicial
sets

(2) f∗ : map(B, X) −→ map(A, X)

is a weak equivalence. Since there is a natural bijection between π0 map(X, Y ) and
[X, Y ], homotopy orthogonality implies indeed orthogonality in HoM. Although
plenty of examples show that the converse is not true, we discuss in Section 2 an
important situation where the converse holds.

The fibrant objects that are homotopy orthogonal to a given map f are usually
called f -local. More generally, if S is any class of maps, the fibrant objects that
are homotopy orthogonal to all the maps in S are called S-local. We denote by

S
h
⊥ the closure under weak equivalences of the class of S-local objects, and call it

the homotopy orthogonal complement of S. Similarly, for a class D of objects, we

denote by D
h
⊥ the class of maps that are homotopy orthogonal to all the objects

in D. In particular, the maps in (S
h
⊥)

h
⊥ are called S-local equivalences, or shortly

S-equivalences.
A homotopy localization is an endofunctor L : M → M preserving weak equiva-

lences, taking fibrant values, and equipped with a natural transformation η : Id → L

(called a coaugmentation) which is idempotent up to homotopy; that is, for each
object X , the morphisms LηX and ηLX from LX to LLX coincide in HoM and are
weak equivalences. Thus L defines indeed a localization in HoM.

If L is a homotopy localization such that LX is S-local and ηX : X → LX is
an S-equivalence for all X , where S is any class of maps, then we say that L is a
homotopy localization with respect to the class S, or shortly an S-localization.

The orthogonal subcategory problem in homotopy theory asks if an S-localization
exists for every class S of maps in a model category M. One reason for using (2)
instead of (1) as orthogonality relation is the fact that the answer to the orthogonal
subcategory problem would too often be negative using (1). For instance, there is
no localization in the homotopy category of simplicial sets onto the class of simply
connected spaces. See [5] for a more elaborate counterexample.

It is well known that the orthogonal subcategory problem has a positive solu-
tion whenever S is a set and M satisfies certain assumptions, which vary slightly
depending on the authors. We will call a model category combinatorial if it is cofi-
brantly generated and the underlying category is locally presentable. The definition
of a locally presentable category can be found in [1] or [18], and the definition of
a cofibrantly generated model category is contained, e.g., in [20]. The notion of
properness is also discussed in [20].
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Theorem 1.1. Let M be a left proper, combinatorial, simplicial model category.
For any set of maps S there is a homotopy localization with respect to S.

Proof. The core of the proof is in [3]. See [20] for an updated approach. �

As far as we know, there is no way to prove this when S is a proper class, not
even for simplicial sets, using the ordinary axioms of set theory. In [8] it was shown
that the statement of Theorem 1.1 holds for a proper class S in the category of
simplicial sets using a suitable large-cardinal axiom (Vopěnka’s principle). We now
undertake a generalization of this fact to other model categories.

Lemma 1.2. Given a cofibrantly genrated simplicial model category M and a
small category C, consider the projective simplicial model structure on the category
of functors MC described in [20, Theorem 11.7.3]. Suppose that A is a cofibrant
diagram in this model structure and X is a fibrant object of M, then the Cop-diagram
hom(A, X) of simplicial sets is fibrant in the injective model structure on SC

op

.

Proof. We have to show that any commutative square

C� _

�Oi

��

// hom(A, X)

��
��

D // ∗,

where i is an injective (objectwise) trivial cofibration of Cop-diagrams of simplicial
sets, admits a lift. By adjunction this problem is equivalent to finding a lift in the
following commutative square in M:

A ⊗C C

��

// X

��
��

A ⊗C D // ∗.

And this problem is equivalent, by another adjunction, to finding a lift in the
following commutative square in M

C:

∅� _

��

// XD

�Oi∗

��
��

A // XC .

In the last square the lift exists, since A is projectively cofibrant and i∗ is an
objectwise trivial, i.e. projective, fibration. �

Recall that a partially ordered set A is called λ-directed, where λ is a regular
cardinal, if every subset of A of cardinality smaller than λ has an upper bound.

Lemma 1.3. Let D be any class of objects in a combinatorial simplicial model
category M, and let S be its homotopy orthogonal complement. Then there exists a
regular cardinal λ such that S is closed under λ-directed colimits in the category of
maps of M.

Proof. Let I be a set of generating cofibrations for the model category M.
Choose a regular cardinal λ such that any object of the set of domains and codomains
of maps in I is λ-presentable (such a cardinal exists since the category M is locally
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presentable). Let A be any λ-directed partially ordered set, and suppose given a
diagram f : A → ArrM, where ArrM is the category of maps in M. Let us depict
it, for simplicity, as a chain:

(3)

X0 −−−−→ X1 −−−−→ · · · −−−−→ Xn −−−−→ · · ·

f0





y

f1





y

fn





y

Y0 −−−−→ Y1 −−−−→ · · · −−−−→ Yn −−−−→ · · · .

Suppose that the maps fi are in S for each i ∈ A. Since M is cocomplete, ArrM is
cocomplete as well, and we may consider the colimit of the diagram f . We need to
show that the induced map colim fi : colim Xi −→ colim Yi is also in S.

Consider the category MA of A-indexed diagrams in M, and endow it with a
model structure as described in [20, 11.6]. Thus, weak equivalences and fibrations
are objectwise, and cofibrations are retracts of free cell complexes. The diagram
(3) may be viewed as a single map in MA. Apply the cofibrant approximation
functor to this map using the above model structure, hence obtaining the following
commutative diagram in M:

X̃0

f̃0
��

�_
�� ��
?

?

?

� �
// X̃1

f̃1
��

�_
�� ��
?

?

?

� �
// · · · �

�
// X̃n

f̃n ��

�_
�� ��
?

?

?

� �
// · · ·

X0

f0

��

// X1

f1

��

// · · · // Xn
//

fn

��

· · ·

Ỹ0 �_
�� ��
?

?

?

� �
// Ỹ1 �_

�� ��
?

?

?

� �
// · · · �

�
// Ỹn �_

�� ��
?

?

?

� �
// · · ·

Y0
// Y1

// · · · // Yn
// · · · ,

where f̃i is a cofibrant approximation of fi.
For every Z ∈ D, let Ẑ be a fibrant approximation to Z. The induced map

Map(colim f̃i, Ẑ) : Map(colim Ỹi, Ẑ) −→ Map(colim X̃i, Ẑ)

can be written as a limit of a fibrant diagram of maps of simplicial sets

limMap(f̃i, Ẑ) : limMap(Ỹi, Ẑ) −→ limMap(X̃i, Ẑ).

The Aop-diagrams of simplicial sets Map(X̃, Ẑ) and Map(Ỹ , Ẑ) are fibrant in the
injective model structure by Lemma 1.2, therefore their inverse limits are homotopy
inverse limits (the constant diagram of points is cofibrant in the injective model

structure). Hence, Map(colim f̃i, Ẑ) = limMap(f̃i, Ẑ) is a weak equivalences, as
a map induced between homotopy inverse limits by levelwise weak equivalences
Map(f̃i, Ẑ). This shows that colim f̃i is in S.

Trivial fibrations in M are preserved under λ-directed colimits, since the set
of generating cofibrations has λ-presentable domains and codomains. From the
commutative diagram

colim X̃i

∼
// //

colim f̃i

��

colimXi

colim fi

��

colim Ỹi

∼
// // colimYi

we conclude that the map colim f̃i is a cofibrant approximation of the map colim fi,
since both colim X̃i and colim Ỹi are cofibrant in M (X̃ and Ỹ are cofibrant diagrams
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in MA and the colimit functor MA → M is left Quillen by [20, 11.6.8(1)]). Hence,
colim fi is in S, as claimed. �

The statement of Vopěnka’s principle and enough motivation for its use in this
context can be found in [1], [2], [8], and [24].

Lemma 1.4. Suppose that Vopěnka’s principle is true. Let D be any class of

objects in a combinatorial simplicial model category M, and let S = D
h
⊥. Then

there exists a set of maps X such that X
h
⊥ = S

h
⊥.

Proof. By abuse of notation, we also denote by S the full subcategory of ArrM
generated by the class S. Since M is locally presentable, ArrM is also locally pre-
sentable. Then, assuming Vopěnka’s principle, it follows from [1, Theorem 6.6] that
S is bounded, i.e., it has a small dense subcategory. We have shown in Lemma 1.3
that there exists a regular cardinal λ such that S is closed under λ-directed colimits
in the category ArrM. Hence, by [1, Corollary 6.18], the full subcategory gener-
ated by S in ArrM is accessible. Thus, for a certain regular cardinal λ0 ≥ λ, the
class S contains a set X of λ0-presentable objects such that every object of S is a
λ0-directed colimit of objects of X .

Since X ⊂ S, we have X
h
⊥ ⊃ S

h
⊥ and (X

h
⊥)

h
⊥ ⊂ (S

h
⊥)

h
⊥ = S. Our aim now is

to show the reverse inclusion (X
h
⊥)

h
⊥ ⊃ S. By Lemma 1.3, (X

h
⊥)

h
⊥ is closed under

λ-directed colimits. Hence (X
h
⊥)

h
⊥ is also closed under λ0-directed colimits and

every element of S is a λ0-directed colimit of elements of X . Then we can choose
X as our generating set. �

Theorem 1.5. Let M be a left proper, combinatorial, simplicial model category.
If Vopěnka’s principle is assumed true, then for any (possibly proper) class of maps
S there is a homotopy localization with respect to S.

Proof. By Lemma 1.4, there exists a set X of maps in M such that X
h
⊥ = S

h
⊥.

Then the homotopy localization with respect to X , which exists by Theorem 1.1,
is an S-localization. �

Thus, the statement of Theorem 1.5 is a positive answer to the orthogonal
subcategory problem in sufficiently good model categories.

2. Idempotent functors and simplicial orthogonality

The next theorem is motivated by results of Dror Farjoun in [12]. We consider
a model category M and assume, as in the beginning of the previous section, that a
functorial choice of a homotopy function complex map(X, Y ) for all X and Y has
been made.

In what follows, if f : A → B is a map and X is an object, we denote by
map(f, X) the map of simplicial sets map(B, X) → map(A, X) induced by f .
If η : F → G is a natural transformation between two functors and H is an-
other functor, then ηH : FH → GH denotes the natural transformation given
by (ηH)X = ηHX for every object X , and Hη : HF → HG denotes the natural
transformation given by (Hη)X = HηX for all X .

Theorem 2.1. Let M be any model category. Let L be an endofunctor in the
homotopy category HoM with the following properties:
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(a) There is a natural transformation η : Id → L in HoM such that Lη = ηL

and Lη : L → LL is an isomorphism on all objects.
(b) There is a map lX,Y : map(X, Y ) → map(LX, LY ) for all X, Y , which is

natural in both variables up to homotopy.
(c) map(ηX , LY ) ◦ lX,Y ≃ map(X, ηY ) for all X and Y .

Then the map

map(ηX , LY ) : map(LX, LY ) → map(X, LY )

is a weak equivalence for all X, Y .

Proof. Let us write Z = LY for simplicity. The assumption (a) says precisely
that L is idempotent in the homotopy category HoM. Hence, among other conse-
quences of this fact, ηZ : Z → LZ is an isomorphism in HoM. Then map(A, ηZ) is
a weak equivalence of fibrant simplicial sets for every A, hence a homotopy equiv-
alence. Choose a homotopy inverse

ξA,Z : map(A, LZ) → map(A, Z)

of map(A, ηZ ) for each A. We claim that ξLX,Z ◦ lX,Z is now a homotopy inverse
of map(ηX , LY ). The proof proceeds as in [6, Theorem 2.4]. On one hand, by the
naturality of l,

ξLX,Z ◦ lX,Z ◦ map(ηX , Z) ≃ ξLX,Z ◦ map(LηX , LZ) ◦ lLX,Z .

Then, using the fact that Lη = ηL in HoM and assumption (c), we obtain

ξLX,Z ◦ map(LηX , LZ) ◦ lLX,Z ≃

ξLX,Z ◦ map(ηLX , LZ) ◦ lLX,Z ≃ ξLX,Z ◦ map(LX, ηZ) ≃ id.

On the other hand,

map(ηX , Z) ◦ ξLX,Z ◦ lX,Z ≃ ξX,Z ◦ map(X, ηZ) ◦ map(ηX , Z) ◦ ξLX,Z ◦ lX,Z .

Since composition with ηX on the left and composition with ηZ on the right com-
mute, we obtain

ξX,Z ◦ map(X, ηZ) ◦ map(ηX , Z) ◦ ξLX,Z ◦ lX,Z ≃

ξX,Z ◦ map(ηX , LZ) ◦ map(LX, ηZ) ◦ ξLX,Z ◦ lX,Z ≃

ξX,Z ◦ map(ηX , LZ) ◦ lX,Z .

Finally, using (c) again,

ξX,Z ◦ map(ηX , LZ) ◦ lX,Z ≃ ξX,Z ◦ map(X, ηZ) ≃ id,

which completes the proof. �

Assumptions (b) and (c) in Theorem 2.1 need not be satisfied by arbitrary
idempotent functors in HoM, not even by those derived from functors in M. Recall
that a functor F in a simplicial model category is called simplicial or continuous if
it is equipped with natural maps of simplicial sets

lFX,Y : Map(X, Y ) → Map(FX, FY )

preserving composition and identity; see [19, IX.1] or [20, 9.8]. A natural transfor-
mation ζ : F → G of simplicial functors is called simplicial if

(4) map(ζX , GY ) ◦ lGX,Y = map(FX, ζY ) ◦ lFX,Y
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for all X and Y ; cf. [19, IX.1].
Now, if M is simplicial and L : M → M is a simplicial functor preserving weak

equivalences and equipped with a simplicial natural transformation η : Id → L

rendering L idempotent in HoM, then L and η fulfill the conditions of Theorem 2.1
in HoM. Thus, we may view conditions (b) and (c) in Theorem 2.1 as “continuity
up to homotopy” of L and η, respectively. As we have shown, continuity up to
homotopy is sufficient for the validity of Dror Farjoun’s result [12, Theorem 2.1].
In fact we have extended it to arbitrary simplicial model categories.

Now we use Proposition 6.4 in [23] to show that the assumptions (b) and
(c) in Theorem 2.1 hold automatically in most cases of interest. Let M be any
model category and let sM denote the category of simplicial objects over M. The
canonical model structure on sM is the one where every level equivalence is a weak
equivalence, the cofibrations are the Reedy cofibrations, and the fibrant objects
are the homotopically constant Reedy fibrant objects (see [23] for motivation and
further details). This model structure need not exist; however, when it exists, sM is
a simplicial model category that is Quillen equivalent to M. Moreover, the simplicial
model category structure on sM is unique up to simplicial Quillen equivalence.

Sufficient conditions for the existence of the canonical model structure in sM

were given in [23], and other sufficient conditions can be found in [14]. Pointed
model categories where the suspension functor and the loop functor are inverse
equivalences on the homotopy category are called stable. According to [23, Propo-
sition 4.5], if M is a proper, cofibrantly generated, stable model category, then the
canonical model structure on sM exists. Likewise, as shown in [14], if M is left
proper and combinatorial, or left proper and cellular, then the canonical model
structure on sM exists.

Theorem 2.2. Let M be a cofibrantly generated simplicial model category where
the canonical model category structure exists in sM. Let L be an endofunctor in M

equipped with a natural transformation η : Id → L. Suppose that L preserves weak
equivalences, takes fibrant values, and η renders it idempotent in the homotopy
category HoM. Then L is a homotopy localization with respect to the class of maps
ηX for all X.

Proof. Let us denote by L′ the simplicial approximation of L given by [23,

Corollary 6.5]. Thus, L′X = |QL̂Sing RX | for each object X , where the notation
is as follows. The singular functor Sing is defined as (Sing X)n = X∆[n] for all n;

the realization functor |− | is its left adjoint; L̂ is the prolongation of L over sM; R

is a fibrant replacement functor in M, and Q is a simplicial cofibrant replacement
functor in sM. By its construction, L′ is a simplicial functor, since it is a composite
of simplicial functors (see [23] for details), and there is a ziz-zag of weak equivalences
between LX and L′X for all X .

Although it is not explicitly stated in [23], if ζ : F → G is any natural trans-
formation of functors that preserve weak equivalences, then the above construction
yields a natural transformation ζ′ : F ′ → G′ which is itself simplicial. Thus, in
our case, there is a simplicial natural transformation η′ : Id′ → L′ (where Id′ need
not be the identity). Therefore, although L′ need not be a coaugmented functor
in M, it follows that L and η fulfill the conditions of Theorem 2.1 in the homotopy
category HoM, since L and L′ define isomorphic functors in HoM. The conclusion
of Theorem 2.1 implies then that L is a homotopy localization with respect to the
class of maps of the form ηX for all X . �
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Now the results of the previous section yield the following answer to Dror
Farjoun’s problem in sufficiently good model categories.

Theorem 2.3. Assuming Vopěnka’s principle, any homotopy localization in a
left proper, combinatorial, simplicial model category is an X -localization for some
set of maps X .

Proof. Under these assumptions, the canonical model structure exists in sM

by [14]; cf. [23, Remark 3.8]. Therefore, Theorem 2.2 can be used and Lemma 1.4
completes the argument. �

This result applies to a useful case not previously established in the litera-
ture, namely to the stable homotopy category of Adams–Boardman, by using, for
example, the model category of symmetric spectra based on simplicial sets.

In the model categories of simplicial sets or spectra, the set X of maps given
by Theorem 2.3 can be replaced by a single map f , namely the coproduct

∐

g∈X
g

of all maps in X . In a general model category, one has to be more careful, in view
of the next counterexample.

Consider the model category which is a product of two copies of the category
of simplicial sets, i.e., the category of diagrams of simplicial sets over the discrete
category with two objects, equipped with the Bousfield–Kan model structure (where
fibrations and weak equivalences are objectwise). Take S = {f, g} for

f : (∅, ∅) −→ (∗, ∅) and g : (∅, ∗) −→ (∅, ∗
∐

∗) .

An object (X, Y ) is S-local if and only if X and Y are fibrant, X is contractible
and Y is either contractible or empty.

Suppose that there exists a map

h : (A, B) −→ (C, D)

such that any S-local object is also h-local, and vice versa. The object (X, ∅) is
h-local if and only if X is contractible. This condition implies that both B and D

are empty; otherwise, for any simplicial set Z, either contractible or not, the object
(Z, ∅) would be h-local. But in this case any object (X, Y ) with contractible X

becomes h-local, hence the contradiction. Note however that, in order to ensure
that every set of maps yields the same localization as their coproduct, it is enough
to assume that the set of maps X → Y is nonempty for all X and Y in the model
category under consideration.
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